Openai搞的这个Cerebras 芯片比较有意思😅 1. 晶圆级尺寸 (Wafer-Scale):世界上最大的芯片,有多大呢,脸盘那么大.😅 晶体管数量: 拥有 4 万亿个晶体管(作为对比,H100 只有 800 亿个) 2. 极高的片上内存带宽 (On-chip SRAM) 这是 Cerebras 吊打 GPU 的核心武器。 消除瓶颈: 在传统的 GPU 架构中,模型计算时需要在显存(HBM)和计算核心(Core)之间频繁搬运数据,这产生了巨大的能耗和延迟。(内存计算会稀释HBM增长率,但蛋糕足够大,同时SRAM的成本也很高,前期对三星海力士美光三巨头威胁不大) 全片上存储: Cerebras 拥有高达 44GB 的片上 SRAM 内存,带宽达到了每秒 21 PB (PetaBytes)。这意味着模型的大部分权重可以完全存储在芯片内部,读写速度比 GPU 的显存快上千倍,从而实现了 OpenAI 模型那样的“秒速”推理。 3. 极简的编程与扩展 单机即集群: 由于芯片本身足够大,一个 Cerebras 节点(CS-3)的算力就相当于几十个甚至上百个传统的 GPU 节点。 无需切分模型: 开发者不需要像在 GPU 集群上那样,把一个大模型拆分成很多份并考虑复杂的跨服务器通讯(Model Parallelism)。在 Cerebras 看来,整个模型就在“一块”芯片上跑。 4. 针对大语言模型 (LLM) 的稀疏优化 处理零值: AI 模型中有很多权重是“零”(稀疏性),传统 GPU 依然会对这些零进行无效计算。Cerebras 芯片内置了稀疏计算引擎,能够直接跳过零值,从而进一步榨取性能。

来自推特
免责声明:以上内容仅为作者观点,不代表Followin的任何立场,不构成与Followin相关的任何投资建议。
喜欢
收藏
评论